
1

Parallel kd-Tree Construction on the GPU with an
Adaptive Split and Sort Strategy

David Wehr∗ and Rafael Radkowski†

Virtual Reality Applications Center, Iowa State University, Ames, IA 50011
Contact: ∗dawehr@iastate.edu, †rafael@iastate.edu

Abstract—We introduce a parallel kd-tree construction
method for 3-dimensional points on a GPU which em-
ploys a sorting algorithm that maintains high parallelism
throughout construction. Typically, large arrays in the
upper levels of a kd-tree do not yield high performance
when computing each node in one thread. Conversely,
small arrays in the lower levels of the tree do not benefit
from typical parallel sorts. To address these issues, the
proposed sorting approach uses a modified parallel sort on
the upper levels before switching to basic parallelization on
the lower levels. Our work focuses on 3D point registration
and our results indicate that a speed gain by a factor of
100 can be achieved in comparison to a naive parallel
algorithm for a typical scene.

I. INTRODUCTION

Sorting and searching data is a key function of many
computer science applications. Thus, it is all the more
important that sorting data and searching can be per-
formed as efficiently as possible. Our research addresses
real-time object tracking for augmented reality (Fig-
ure 1a) using point datasets obtained from range cameras
[19], [18]. The object of interest is typically a subset of
the scene point set. To identify and track it, we match a
reference dataset with the related point set. Technically,
we solve a matching by alignment task in two steps.
First, we use feature descriptors (axis-angle descriptors)
to obtain a rough alignment between a reference point
set and the related points in the environment point
set. This estimate is further refined using the Iterative
Closest Point algorithm (ICP). The result is a reference
object, which is perfectly aligned with the counterpart in
the environment (Figure 1b-d). Repeating this frame by
frame allows for object tracking.

Feature descriptor matching and ICP algorithms re-
quire nearest neighbors for execution. Feature descriptors
rely on adjacent neighbors to represent the surface char-
acteristic of the object. ICP uses neighboring point pairs
to align the two point sets. A state-of-the-art solution to
efficiently find nearest neighbors is a kd-tree. A kd-tree

Fig. 1. a) Tracking a piston motor allows one to register virtual ob-
jects, spatially aligned with the physical object. b-d) A visualization
of the matching and registration process in order to align a reference
dataset (green) with its counterpart in the environment (red).

represents the data in a spatial tree which increases the
performance of nearest-neighbor search to O(n log(n))
[3], in comparison to a brute force approach with O(n2).
Although the kd-tree increases the performance of find-
ing nearest neighbors, the procedural generation of a kd-
tree tree is the bottleneck of the entire method.

Parallel kd-tree generation on a GPU is one approach
to increase the performance. Several algorithms were
already introduced [22], [17], [12]. Each follow different
strategies; however, the most complex part remains the
sort operation. The sort algorithm that yields the highest
performance on a GPU for large datasets is the radix
sort algorithm [20]. Its sequential implementation sorts a
dataset in O(n); parallel implementations are even faster.
However, the parallel radix sort solutions work well only
if the dataset saturates the GPU, meaning many threads
are utilized and each thread sorts an adequate amount of
data. Performance is lost for large data arrays and very
small ones, which typically occur on the upper and lower
levels of a kd-tree.

The goal of this effort is to investigate a sort algorithm
and strategy which can maintain high parallelism at all

This is a post-peer review, pre-copyedit version of an article publishd in International Journal of Parallel Programming. The final
authenticated version is available online at: http://dx.doi.org/10.1007/s10766-018-0571-0



2

levels of the tree by using a modified parallel sort as well
as switch to different sequential algorithms with respect
to the number of points to sort. In contrast to the related
research, we work with medium-size (300.000) point
sets and switch between a parallel radix sort, sequential
insertion sort, and a sequential radix sort for large arrays,
normal sized arrays, and small arrays of points. We tested
our approach with random data and a typical scene setup
and compared it to a naive GPU solution. The results
indicate a speed increase by factor 100.

The remaining paper is structured as follows. Section
2 reviews the related research and provides the required
background information for this paper. Afterwards, we
explain our GPU realization in Section 3. Section 4
describes performance tests and comparison. The last
section closes the paper with a conclusion and an out-
look.

II. BACKGROUND AND RELATED WORK

A kd(imensional)-tree is a data structure to organize
points with k dimensions, in our case, 3-dimensional
points x = {x, y, z} ∈ R3. It belongs to the binary
search tree family and was originally examined in [3],
[4] and [5]. In difference to a binary tree, it constrains
the dimensions on each level of the tree: Each level
splits all points along one specific dimension (x, y, or
z) using a hyperplane which is perpendicular to the
related axis. The hyperplane separates all points into
two areas: All points lower than the split value can be
considered left of the hyperplane, the other points at the
right. The split dimension changes at each level, starting
with x at the root, to y, to z, and re-starting at x again.
To identify the hyperplane, a kd-tree algorithm needs
to find a pivot point for each node of the tree, which
incorporates sorting the area and determining the median
value, which is typically used as the split value (the
hyperplane). Sorting a large dataset is the performance
sink of a kd-tree algorithm and subject for optimization.

In recent years, plenty of GPU solutions to speed up
the construction and the nearest neighbor search with a
kd-tree were introduced. In an early work, Garcia et al.
[6] compared a brute-force nearest neighbor search im-
plemented on a GPU with a MATLAB implementation.
The authors report a speedup up to a factor of 100.

Zhou et al. [22] introduced a kd-tree construction
algorithm for a GPU with a focus on computer graphic
primitives and ray-tracing. The algorithm constructs the
tree nodes in breadth-first search order. The authors
examined a strategy for upper level nodes, i.e. nodes with
many points to sort, in order to maintain fine-grained
parallelism of a GPU. They employ a combination of

spatial median splitting and empty space maximizing,
to sort the arrays of large nodes, which first computes
bounding boxes per node and further splits the array
into chunks to yield an optimal GPU saturation [11].
Although the authors introduce a similar strategy as we
follow, their dataset is assembled to support ray tracing.
The paper reports a speedup factor in the range of 9 to
13.

The authors of [17] published a nearest neighbor
search solution for a GPU. A kd-tree is built on the
CPU and copied to the GPU to execute the search. The
authors’ work is on 3D object registration, thus, they
have to solve the same problems we address. However,
they did not construct a kd-tree on a GPU.

Leite et al. [14], [15] construct a kd-tree on a gpu
using a grid spatial hashing. The grid size can be set by
users to tailor the algorithm for different scenarios. The
authors also perform the search on the gpu to minimize
the amount of data that need to be copied between the
gpu and the host memory.

Karras [13] suggested an in-place algorithm to con-
struct binary radix trees. The approach sorts the data
for the tree in parallel and the connection between the
segments of the array is maintained by assigning indices
to nodes. In [8], Ha et al. present a 4-way radix sort
algorithm for a gpu, which demonstrate a significant
performance increase. Singh et al. [21] published a
survey addressing several sort algorithms optimized for
a gpu.

Although the results of the previous work show a
high performance gain in comparison to a brute-force
approach, the efforts focus on 3-dimensional datasets.
Recently, Hu et al. [12] introduce parallel algorithms
for KD-tree construction and nearest neighbor search
with a focus on high dimensional datasets. In their
implementation, each node at the same level of the
tree is processed in an individual thread, computing
the split index and dimension for the current node and
redistributes all points. The authors’ algorithm yields a
speedup ranging from a factor of 30 to a factor of 242
for point sets of different sizes.

Our effort is inspired by [12] and [22]. We maintain
the strategy to compute each node in a single thread.
However, we design a sort algorithm that utilizes many
threads, regardless of the number or size of arrays to
sort, which yields further speedup. Sorting the point set
along the split dimension is the most costly procedure of
the kd-tree generation. Running a single sort algorithm
for each node limits the performance, especially when
the number of points per array are small. At the upper
levels of a kd-tree, the array is split into just two or
four nodes, so assigning each node to a thread does not



3

yield a significant performance gain, since the GPU re-
mains under-saturated. Designing the algorithm to utilize
all available threads throughout the entire construction
yields the highest performance, as the GPU can remain
fully saturated.

III. GPU REALIZATION

The following section describes our parallel kd-tree
construction algorithm. The tree is built iteratively in a
top-down manner. Input data is an array of N points,
and the output is a kd-tree data structure.

Sorting the points along a dimension for each node
causes the largest performance bottleneck during kd-
tree construction. This is the performance limiter which
we optimize in our algorithm. Sorting is performed in
parallel to utilize the increased computation resources on
the GPU. However, the workload is not trivially paral-
lelizable, especially at the beginning of the construction
process, when only a few arrays need to be sorted. To
prevent bottlenecks in the upper levels, we use a modified
parallel radix sort to evenly distribute the work across the
GPU (Sec. III-B). In the lower levels, there are enough
nodes being independently created that parallelization is
achieved by simply running a single standard sort per
node. Additionally, to avoid the overhead of storing the
median and bounds of each node during construction,
we use a closed-form median approximation formula, as
in [7].

The following subsections provide an overview of
the parallel kd-tree construction, explanation of memory
management, and a closer look at the particular parts
of the algorithm. We utilize CUDA and CUB1 for our
implementation.

A. Kd-tree construction for vector data in R3

Algorithm 1 describes the strategy for our parallel kd-
tree construction. The main algorithm runs on the CPU
and invokes work units to run in parallel on the GPU.
First, each d-dimensional point is split into d separate
datasets and scaled by a factor F to quantize the values
so they can be sorted by an integer sort. Separating the
points by dimension coalesces memory access since only
one dimension is sorted at a time, which improves GPU
performance [16], [9]. We also compute the maximum
element of the dataset per dimension to minimize the
number of iterations required during radix sort. At each
level of the kd-tree, we sort the points by dimension,
compute the median splitting elements, and add the
median elements to the tree. Figure 2 shows how each

1https://nvlabs.github.io/cub

node corresponds to both a subsection of the array and
a splitting element. The proposed algorithm recursively
constructs a kd-tree using linear-time radix sort on
the upper layers of a kd-tree, resulting in O(nlog(n))
runtime. The time spent performing insertion sort on the
final levels (see Alg. 2) can be considered overall linear,
since only arrays less than a fixed size (16 in our case)
are sorted using insertion sort, and the number of sub-
arrays less than a constant size is linear in N .

Fig. 2. Level 1 handles the entire array, and splits on the median
between 0 and N . Nodes in level 2 each handle corresponding sub-
arrays (”chunks”) from their parent. This pattern continues until each
node only handles a single element.

Algorithm 1: The construction algorithm
Input : Array of N points in R3

Output: kd-tree data structure
initialization (memory allocation);
(x, y, z, index)← parallel index generation:

store an array index for each point pi

(p0, p1, p2)← parallel split, scale, and quantize:
split array in R3 into components of 3 arrays in
{0 . . . F};

(max0,max1,max2)← Find max values;
l← 0

1: for l = 0 to l = blog2Nc do
2: (pd, index)← Sort (different strategies);
3: (p0, p1, p2)← Parallel reorganization:

Re-organize all other points to align with the
sorted pd ;

4: Parallel create tree nodes for current level
5: end for

B. Sorting Strategy

The key reason for the performance of our approach
is the ability to evenly distribute the sorting load across
the GPU, since our profiling shows that 95% of the time
constructing the tree is spent sorting.

The challenge in evenly distributing the load is that
the number of arrays and their size change with each
level of the kd-tree data structure. For example, with N
points, the first level requires 1 sort of N points. The



4

second level requires 2 sorts of N−1
2 points each, and

so forth, until the final level requires N
2 sorts of 1 point

each. Typical parallel sorting algorithms typically work
best sorting large arrays, but have too much overhead for
sorting smaller arrays.

Our primary method for optimizing sorting to work
with the wide range of array sizes is to use a variation on
parallel radix sort that can operate on the entire array of
N points by handling each sub-array independently. The
second optimization is to switch to executing multiple
sequential sorts in parallel when the number of sorts is
large enough to saturate the threads.

Algorithm 2: Sort
Input : Array of N points in N
Output: pd, index
(chunksize) ← N

2l

1: if chunksize ≥ cutoff then
2: (pd, index) ← Parallel radix sort
3: else if 16 ≤ chunksize < cutoff then
4: (pd, index) ← Sequential radix sort
5: else
6: (pd, index) ← Sequential insertion sort
7: end if

Algorithm 2 depicts the overall sorting strategy. The
utilized sorting algorithm depends upon chunksize,
where a chunk is the sub-array that is handled by a
particular node (Figure 2). The total number of points to
be sorted is constant, thus chunksize can be computed
from Eq.1, where l is the level of the kd-tree to be
constructed and the root node is at level 0.

chunksize =
N

2l
(1)

If the chunk size is at least as large as a specificed cutoff
point, we sort the entire array at once using our parallel
radix sort algorithm (Alg. 3). When the chunksize drops
below cutoff , we sort each chunk using a sequential
radix sort, with one chunk per thread. The final levels
with a chunksize of less than 16 are sorted with a
sequential insertion sort running on a separate thread for
each chunk.

The explanation for a certain cutoff size is further
elaborated in Sec. III-C. The number 16 as threshold
between radix sort and insertion sort is inspired by
common techniques among hyrbid sorts for small arrays,
since the O(n2) performance is offset by a low constant
factor. For instance, the C++ standard template library
(libstdc++ specifically) switches to insertion sort when
arrays fall below 15 elements. We chose a similar value

in an attempt to have good performance over a variety
of GPUs.

Algorithm 3: Parallel Radix sort
Input : Array of N points in N, maxd

Output: pd, index
magnitude← 1

1: while
⌊

maxd

magnitude

⌋
> 0 do

2: Clear memory H
3: (H)← parallel histogram creation
4: (H ′)← parallel inclusive prefix sum of H .
5: (T )← parallel distribute counts
6: (N)← parallel copy of T
7: magnitude← magnitude · base
8: end while

C. Parallel Radix Sort

Fig. 3. Schematic of the memory management for the parallel radix
sort.

Algorithm 3 describes the main steps in our parallel
radix sort. It can be viewed as a segmented version
of standard parallel radix sort [9]. Radix sort requires
multiple iterations of a stable sort — in our case, count
sort. As in standard radix sort, we loop over increasing
magnitudes of base until we have sorted the largest
magnitude which occurs in our dataset.

To allow for sorting segments independently, each
chunk has a separate set of histograms kept in global
memory, visualized as layers in the diagram (Fig. 3).
Each block handles TPB (threads per block) number of
points in the array and computes a block-local histogram



5

of the digits. These histograms are stored in block-
local memory (called shared memory in CUDA) during
construction for fast access.

The amount of block-local memory required per block
is proportional to the number of chunks it overlaps.
Because chunk size decreases by half at each level,
the number of chunks that are overlapped, and thus
the memory required, grows exponentially in the final
levels. To prevent this exponential memory requirement,
we limit each block to overlapping at most two chunks,
resulting in two histograms: h0 and h1. This implies
the cutoff parameter for switching must be at least
TPB. We set cutoff = TPB to allow the parallel
sort to execute on as many levels of construction as
possible. Setting cutoff as low as possible is validated
in Sec. IV-A.

Once the local histograms are computed, they are
copied to the corresponding location in the global his-
togram, H . As in [20], we store the histograms in
column-major order to allow a prefix sum operation to
compute the final location of each point in the array. The
chunks are stored back-to-back in memory to uphold this
property across the entire array.

Lastly, the points are distributed to their corresponding
final location in a temporary array (Alg. 5) using the off-
sets from the prefix-sum of H . Because the distribution
must be stable, we distribute each local histogram (col-
umn) in a sequential manner, requiring TPB iterations
of a loop.

The parallel histogram creation is shown in Alg. 4.
It is executed with one thread per point. The general
approach is to take advantage of fast atomic operations
on block-local memory for computing a block-local
histogram, then copying that into global memory. Each
thread handles a single point, but works cooperatively
with the other threads within the block via block-local
memory. The initialization of h0 and h1 is done once per
block, as is the transfer of h0 and h1 to global memory.
Determining which chunk a point belongs to is described
in the Appendix.

Alg. 5 describes the parallel distribution of values
in detail. It is similar to standard radix sort, with the
exception that each thread only handles a single his-
togram (columns in Fig. 3). We additionally populate an
index array so the dimensions that are not being sorted
can be rearranged to correspond to the currently sorted
dimension array.

The number of threads per block chosen (the value
of TPB) has an impact on the overall performance.
Theoretically, we expect that running a higher TPB count
is more beneficial for larger point sets, while a low
TPB is faster for smaller sets. This can be understood

Algorithm 4: Parallel histogram creation
Input : Array of N points in N, maxd,

chunksize, H , e, thread index
Output: H

1: if thread index = 0 then
2: (h0, h1)← Initialize block-local memory arrays,

each of size base, to 0
3: end if;
4: thread barrier;
5: i← Point index in N this thread is assigned to
6: split← Splitting if chunk(i) 6= chunk(i+ 1)
7: chunk rel← chunk(i)− chunk(first point in this

block); chunk rel ∈ {0, 1}
8: if ¬split ∧ i < N then
9: d← digit of Ni for magnitude e

10: atomic(Cchunk rel[d]← Cchunk rel[d] + 1)
11: end if
12: thread barrier;
13: if thread index = 0 then
14: H ← Add h0 and h1 to their corresponding

locations in the histogram
15: end if

Algorithm 5: Parallel Distribution
Input : Array of N points in N, Temporary

array N ′ of N points, Array of indices
I H , e, TPB

Output: N ′, I ′
1: ib ← Index of block assigned to this thread;
2: ic ← Chunk index for block ib;
3: ncb, nce ← Start and end indices in N for chunk;
4: hb ← max(ncb, ib · TPB) (Begin index of

histogram);
5: he ← min(nce, (ib + 1) · TPB) (End index of

histogram);
6: for i = he to i = hb do
7: digit← digit of Ni for magnitude
8: H ← Decrement value in H for block ib and

digit digit
9: iout ← Value from H for block ib and digit digit

10: N ′[iout]← N [i]
11: I ′[iout]← I[i]
12: end for

by noting that there are two steps contributing to the
majority of the runtime: the local histogram creation, and
the global histogram distribution. For higher numbers of
threads per block, fewer blocks in the histogram creation
allow for better parallelization when many (hundreds of
thousands) of threads are involved, as well as fewer



6

writes to global memory. On the other hand, higher
numbers of threads per block causes the distribution step
to run fewer threads that each take longer, which is a
disadvantage for parallelism.

Theoretically, it is possible to identify an ideal value
analytically, howver, there are many factors that con-
tribute to the performance, including GPU scheduling,
memory access latencies, and cache timing, i.e. the GPU
at hand. Therefore, the ideal TPB is dependent upon the
number of points to sort, and we recommend a search
among candidate values to find it. Any multiple of 32 up
to 1024 is a viable block size candidate for TPB, since
GPU warps are of 32 threads, and blocks cannot exceed
1024 threads. Searching among potential dataset sizes
with a granularity of 10 results in 10 · 32 = 320 com-
binations of hyper-parameters to test. As the algorithm
is meant for real-time applications, 320 tests amounts to
very low total time, and the hyper-parameter search data
can be collected only once for a particular GPU. See
Section IV-A for results of hyper-parameter searching.

D. Create Node

Node creation is done once per level, with one thread
per newly created node. Each node needs to record
the median element that it splits along, as visualized
in Figure 2. The computation for the median is done
by computing the start index of the right child chunk,
using the method outlined in the Appendix. The array
for the tree is pre-allocated, so we simply copy the point
information into the corresponding location within the
tree array.

E. Nearest Neighbor Search

For searching the kd-tree, we first copy the query
points to the GPU so the search can be conducted
in parallel with one thread per query point. For the
application of object tracking, an approximate nearest
neighbor search is sufficient, so we use a priority queue
to handle the backtracking required for nearest neighbor
search [1]. We extend this approach to use a double-
ended priority queue, allowing us to place a bound
on the number of enqueued nodes and only keep the
most likely candidates [2]. The search is performed by
descending the tree, and at each branch, placing the node
not taken into the queue. If the queue is full and the new
node is closer, then the furthest enqueued item will be
removed and replaced. Once a leaf node is reached, the
next nearest item in the queue is removed, and search
continues from that point. Traversal of a node can be
terminated based on the ”bounds-overlap-ball” test [5].

IV. PERFORMANCE TESTS

We ran several experiments to measure the perfor-
mance of our approach. For variety, we chose three
point sets for testing, including simulated and real-world
data. First, we empirically chose the hyper-parameters
which yield the best performance (Sec. IV-A). We further
compared our approach with a current state-of-the-art
method and a naive parallelization approach (Sec. IV-B).
All experiments, except where noted, were executed on
an NVIDIA Titan X GPU using CUDA 8.0.

A. Performance analysis

Our approach has three adjustable parameters —
namely the number of threads per block (TPB), the base
for radix sort, and the cutoff point between parallel and
sequential sorts. We ran a hyper-parameter experiment to
verify our assumptions regarding the expected behavior.

We choose to set the cutoff point equal to the number
of threads per block to maximize the time spent using
the parallel sorting algorithm. Figure 4 shows the per-
formance difference between setting cutoff = TPB
versus the fastest experimental value of cutoff . We
find that setting cutoff to TPB is nearly always ideal,
with a loss of at most 0.0025%, which matches our
expectations.

Fig. 4. Performance loss from setting cutoff = TPB versus the
fastest experimental cutoff value for various data set sizes.

Our tests showed that setting the base parameter to 32
was optimal for all scenarios. All following experiments
were done with base = 32.

The only hyper-parameter remaining is TPB, or
threads per block. Figure 5 shows the execution times
for different TPB values with mean and one standard
deviation marked. Each experiment was repeated 25
times to obtain statistically significant results.



7

Fig. 5. Comparison of the performance for different numbers of
randomly generated points and the numbers of threads per block
(TPB) using the suggested method.

Fig. 6. Comparison of the performance for different numbers points
from a typical scene with the numbers of threads per block (TPB)
using the suggested method.

The results show that on average, 2.5ms are required
to construct a kd-tree with 2,000 points and 30ms for
500,000 points. It is also noticeable that 32 and 64 TBP
yield the lowest runtime for a low number of points, up
to 200,000. For larger numbers of points, 128 or even
256 threads per block are preferable.

As mentioned above, we work on rigid object tracking
which requires finding a small object of interest in a
larger point dataset as described in [19], [18]. Therefore,
to verify the results on a practical application, a scan
of a typical work environment was captured (Fig. 7)
for testing. Note that a typical scene scan contains up
to 280,000 points, which is the limit of our camera
hardware. For repeatability, we also performed tests

with the Stanford bunny. These results are depicted in
Figure 6. We find that the performance is similar to
random points.

Fig. 7. Point set of a typical work environment

The quantitative data for construction and nearest-
neighbor search experiments are shown in Table II in
the appendix.

To see the impact of each sort on the overall time,
we recorded the amount of time spent executing parallel
radix sort, sequential radix sort, and sequential insertion
sort. The proportion of total time spent in parallel
radix sort, serial radix sort, and serial insertion sort are
96.5% ± 0.36%, 0.86% ± 0.39%, and 2.64% ± 0.39%,
respectively, with one standard deviation. This, in con-
junction with the observation that best times are achieved
by switching from parallel radix sort as late as possible
(staying within memory constraints), indicates that the
modified parallel radix sort is the major contributor to
the performance.

B. Comparisons

We compared our approach with the method suggested
by Hu, et al. [12] and ran experiments using the same
GPU model (NVIDIA GeForce GTX 660) as they tested
with. The times for each method are shown in Table I.
The results suggest that for small datasets (< 102, 400),
the proposed method is faster than current state of the
art methods, which is reasonable. Hu, et al. gain perfor-
mance from a larger number of threads, thus, on lower
levels of a kd-tree. For small numbers, the suggested
method yields better performance due to the independent
number of threads on each level of the tree.

We also anticipate that our approach may be able to
better take advantage of modern GPUs for two reasons
— firstly, it is able to utilize all threads (which modern
GPUs have more of), even when there are few nodes
being constructed. Secondly, the NVIDIA Maxwell ar-
chitecture (CUDA Compute Capability 5.x) introduced



8

hardware support for shared memory atomics [10], and
fast atomic shared memory operations are crucial to
our algorithm. Therefore, when running on a GeForce
GTX 660 (CUDA compute capability 3.0), the histogram
creation is significantly slower than on a newer GPU.
Investigating these hypotheses remains as future work.

TABLE I
TIME TO CONSTRUCT KD-TREE FOR 3-DIMENSIONAL RANDOMLY

GENERATED POINTS ON AN NVIDIA GEFORCE GTX 660

Number of points Time (ms)
Proposed method Hu, Nooshabadi, Ahmadi

3,200 3.5 4.6
6,400 4 7.2
12,80 4.8 8.2
25,600 5.9 8.8
51,200 9.5 12.4
102,400 22.2 20.2

We further compared our approach with a simple
parallelization technique by sorting each chunk indepen-
dently on a single GPU thread. Radix sort and insertion
sort were chosen because we use them in our hybrid
sorting method. Figure 8 shows the results. Generating
a kd-tree with only 10000 points requires 61ms for
radix sort, and for 5000 points using insertion sort,
already 4000ms. Testing insertion sort with data sizes
comparable to what we tested on the GPU was infeasable
due to the quadratic runtime of insertion sort.

Lastly, we compared to a typical kd-tree construction
on the CPU, shown in Figure 9. The data were collected
by running on an Intel Core i7-7700HQ processor.

Comparing the results with the suggested method,
we yield a performance gain by a factor of up to
∼ 150 against both CPU construction and a simple
parallelization method.

C. Discussion

Our results are roughly in line with what we expected
regarding runtime growth, as radix sort is a linear-
time algorithm. One of the interesting results is how
higher TPB values result in better performance for large
data sizes, but worse for smaller datasets. As noted in
Sec. III-B, higher TPB makes the histogram creation
more efficient since more work is done in block-local
memory, but makes the distribution step slower, as it
needs to loop over a larger number of points.

The final levels of the tree must be sorted using a
non-parallel version, because of memory limitations, as
described in Section III-B. The switch to insertion sort
for the final levels, although not a new idea, has a
measurable impact on runtime, particularly for real-time
systems. Figure 10 compares the amount of time to sort

Fig. 8. Comparison of the performance for different numbers of
randomly generated points and the the type of sort using a simple
parallelization technique.

Fig. 9. Time for constructing a kd-tree on the CPU for different
numbers of randomly generated points.

each level of the tree using only radix sort, only insertion
sort, and the hybrid approach. As the level gets deeper,
each sort is of fewer points, and thus the overhead of
radix sort becomes more significant. We verified this
behavior with the NVIDIA Visual Profiler.

Fig. 10. Times for sorting final levels, using different sequential
algorithms.



9

V. CONCLUSION AND OUTLOOK

This paper introduced an approach for kd-tree gener-
ation on a GPU which improves the performance when
working with medium-size point datasets (≤ 500000)
by focusing on sorting, which is the major performance
bottleneck. Typical sorting algorithms are not tailored
to work with the highly variable data sizes encountered
in kd-trees, making full GPU saturation difficult. Our
approach to improve previous work is to adapt a parallel
sorting algorithm to sort sub-sections of the data inde-
pendently. Although the algorithm is limited to sorting
larger sub-sections because of memory constraints, our
approach mitigates this by switching to a simple paral-
lelization model for the final levels of construction. The
time is further decreased by switching from radix sort to
insertion sort for very small arrays.

A comparison with a typical approach on the CPU
indicates a performance gain of up to a factor of 150.
Performance is also on comparable to a current state-of-
the-art GPU kd-tree construction, with reason to believe
it may be better on newer GPUs. Therefore, we con-
clude that a modified parallel radix sort in combination
with switching sorting strategies improves the GPU
performance of kd-tree construction in comparison to
previously reported approaches.

The kd-tree implementation is currently used as part of
our tracking software TrackingExpert [19] to find nearest
neighbors to refine object alignment with ICP. In future
work, we intend to use it for feature descriptor matching
as well.

APPENDIX

Median Splitting Determination

I To determine which chunk a point belongs to, we
use the technique described in [7] to compute a
median. In brief, we consider the width w of a
chunk to be a real number w = N

2l
, where l is the

zero-indexed tree level. Therefore, given a particular
index i, we can determine the chunk by c = i

w .
II Determining whether a point is a median splitting

element is also necessary during the histogram cal-
culation. That can be determined with the following
criteria, as per [7].

splitting =

{⌈
i
w

⌉
< i+1

w ∧ i 6= 0; true

else; false

III Finally, we need the ability to calculate the starting
index of a chunk, excluding the splitting element.

Because the chunk width is constant, the starting
index is of a chunk c can be computed by:

is =

{
c = 0; 0

i 6= 0; b(w · c)c+ 1

Experimental Data

TABLE II
QUANTITATIVE RESULTS FOR ALL CONSTRUCTION OPERATIONS.

THE TIME IN ms SHOWS THE MEAN VALUE OF ALL TESTS PER
ITEM. R: RANDOM, WB: WORKBENCH SCENE, B: STANFORD

BUNNY

Comparison Suggested method
Points TPB R WB B R WB B
2,000 32 61 24 18 1.5 1.8 1.9

64 61 24 18 1.8 2.2 2.2
128 61 24 18 2.4 3.0 2.8
256 61 24 18 3.2 4.2 4.2

50,000 32 302 485 315 3.0 3.8 3.6
(36,000)2 64 302 489 315 3.6 4.5 4.4

128 302 489 315 5.1 6.6 6.0
256 301 489 315 9.5 13 9.7

100,000 32 605 958 - 4.2 4.7 -
64 605 958 - 4.6 4.7 -
128 605 958 - 6.0 6.3 -
256 605 958 - 11 12

300,000 32 1918 2545 - 19 16 -
64 1916 2478 - 16 11 -
128 1917 2511 - 13 11 -
256 1912 2579 - 18 18 -

400,000 32 2559 - - 29 - -
64 2555 - - 28 - -
128 2559 - - 21 - -
256 2555 - - 23 - -

500,000 32 3245 - - 37 - -
64 3249 - - 41 - -
128 3251 - - 31 - -
256 3249 - - 29 - -

TABLE III
QUANTITATIVE RESULTS FOR ALL NEAREST-NEIGHBOR QUERIES.
THE TIME IN MS SHOWS THE MEAN AND STANDARD DEVIATION

OF ALL TESTS.

Tree Size Query size
100 10 000 50 000 100 000

2 000 676 ±71 1024 ±103 4897 ±115 9672 ±128
5 000 762 ±104 1055 ±90 5421 ±160 10781 ±174

50 000 871 ±154 1502 ±234 7851 ±190 15769 ±174
100 000 849 ±158 1466 ±152 8454 ±109 17104 ±145
200 000 844 ±102 1763 ±250 9293 ±172 18896 ±180
500 000 899 ±122 1976 ±348 10082 ±283 20535 ±255

2Bunny has only 36,000 points rather than 50,000



10

REFERENCES

[1] Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu,
A.Y.: An optimal algorithm for approximate nearest neighbor
searching fixed dimensions. J. of the ACM 45(6), 891–923
(1998)

[2] Atkinson, M.D., Sack, J.R., Santoro, N., Strothotte, T.: Min-
max heaps and generalized priority queues. Commun. ACM
29(10), 996–1000 (1986)

[3] Bentley, J.L.: Multidimensional binary search trees used for
associative searching. Commun. ACM 18(9), 509–517 (1975)

[4] Bentley, J.L.: Multidimensional divide-and-conquer. Commun.
ACM 23(4), 214–229 (1980)

[5] Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for
finding best matches in logarithmic expected time. ACM Trans.
Math. Softw. 3(3), 209–226 (1977)

[6] Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor
search using GPU. CoRR (2008)

[7] Garrett, T., Radkowski, R., Sheaffer, J.: Gpu-accelerated de-
scriptor extraction process for 3d registration in augmented re-
ality. In: 23rd International Conference on Pattern Recognition.
Cancun, Mexico (2016)

[8] Ha, L., Kruger, L., Silva, C.: Fast four-way parallel radix sorting
on gpus. Comput. Graph. Forum 28(8), 2368-2378 (2009)

[9] Harada, T., Howes, L.: Introduction to gpu radix sort (2011)
[10] Harris, Mark: Maxwell: The most advanced CUDA GPU ever

made (2014). NVIDIA
[11] Havran, V.: Heuristic ray shooting algorithms. Ph.D. thesis,

Czech Technical University, Czech Technical University (2001)
[12] Hu, L., Nooshabadi, S., Ahmadi, M.: Massively parallel kd-

tree construction and nearest neighbor search algorithms. In:
2015 IEEE International Symposium on Circuits and Systems
(ISCAS), pp. 2752–2755 (2015)

[13] Karras, T.: Maximizing parallelism in the construction of bvhs,
octrees, and k-d trees. In: Proceedings of the Fourth ACM
SIGGRAPH / Eurographics Conference on High-Performance
Graphics, EGGH-HPG’12, pp. 33–37 (2012)

[14] Leite, P., Teixeira, J.M., Farias, T., Reis, B., Teichrieb, V.,
Kelner, J.: Nearest neighbor searches on the gpu. International
Journal of Parallel Programming 40(3), 313–330 (2012)

[15] Leite, P.J.S., Teixeira, J.M.X.N., de Farias, T.S.M.C., Teichrieb,
V., Kelner, J.: Massively parallel nearest neighbor queries for
dynamic point clouds on the gpu. In: 2009 21st International
Symposium on Computer Architecture and High Performance
Computing, pp. 19–25 (2009)

[16] Merrill, D.G., Grimshaw, A.S.: Revisiting sorting for gpgpu
stream architectures. In: Proceedings of the 19th International
Conference on Parallel Architectures and Compilation Tech-
niques, PACT ’10, pp. 545–546 (2010)

[17] Qiu, D., May, S., Nüchter, A.: GPU-Accelerated Nearest Neigh-
bor Search for 3D Registration, pp. 194–203. Springer Berlin
Heidelberg, Proceedings of Computer Vision Systems: 7th
International Conference on Computer Vision Systems, ICVS
2009, Berlin, Heidelberg (2009)

[18] Radkowski, R.: Object tracking with a range camera for aug-
mented reality assembly assistance. Journal of Computing and
Information Science in Engineering 16(1), 1–8 (2016)

[19] Radkowski, R., Garrett, T., Ingebrand, J., Wehr, D.: Tracking-
expert - a versatile tracking toolbox for augmented reality. In:
IDETC/CIE 2016, the ASME 2016 International Design Engi-
neering Technical Conferences & Computers and Information
in Engineering Conference. Charlotte, NC (2016)

[20] Satish, N., Harris, M., Garland, M.: Designing efficient sorting
algorithms for manycore gpus. In: 2009 IEEE International
Symposium on Parallel Distributed Processing, pp. 1–10 (2009)

[21] Singh, D.P., Joshi, I., Choudhary, J.: Survey of gpu based sorting
algorithms. International Journal of Parallel Programming pp.
1–18 (2017)

[22] Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time kd-tree
construction on graphics hardware. ACM Trans. Graph. 27(5),
126:1–126:11 (2008)


