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Description User Interfaces

A smart home framework that allows devices within a user's house to communicate with a Rule Editor
central server. Communication involves uploading data from sensors and receiving e Sidebar (add/edit branches) Node
commands to perform actions. o Tree Interface (visualize tree)

elHAUS | s | Dosieons todes  View specific node information
« Manually actuate nodes

Users can also define rules to automate behavior of their devices, using data from their
sensors, time of day, or day of the week.
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IntelliHAUS Rules Datastreams Modes

The home is manageable from a web portal that is available globally, allowing the user to i

view data from their sensors, send commands to actuators, and create rules.
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The server communicates via a REST API with the hub and the website. The API is listed i
below. Datastreams

Created on:
79.3

 View specifc datastream graph
« Make datastream public/private

Modules
The server is arranged these modules:

« Models - Database models for Sequelize, a node.js ORM
« Rule Evaluation - Standalone module that can evalute rules
» Routes - Separates the portions of the server dedicated to handling different requests and

responses
« APl routes - Routes related to API calls / \
« HTML routes - Routes related to serving the website
« Public routes - Routes accessible without authentication s é

Design Decisions

Our server is written in node.js, since it needs to handle many simultaneous connections at J —

a time, including long-poll requests, which require the server to handle connections in an oo

asynchronous fashion. o
username: text longitude: double name: text public: boolean

Since the rules will take a significant amount of the total processing time for the server, as 9) .

they need to be re-evaluated often, separate worker processes are created to handle all the [ A I e

rule evaluation, which communicate with the main process via IPC. — 1

Userld: integer Datastreamld: integer Ruleld: integer

.A \ - o name: text lastData: float ARRAY
, continuousData: float

TCP public: boolean
Binary discreteData: int

! Datapoint datatype: text
! Ao binaryData: byte ARRAY
TCP discreteLabels: string
Binary ARRAY time: timestamp [w/ zone]
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data: <float/data/binary> (reqd) Node HTTP- °
/api/datapoint POST Push new data from a nod [application/json] time: <time= [application/json] success: <boolean> No , Connection r Website
: Connection User Model
name: <string> TCP Socket
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/api/datastream POST Create a new datastream [application/json] public: <boolean= [application/json] id: <int> No [ TCP Socket ] request HTTP p \ Sign Up/Log In ]
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datapoints: array[dbDatapoint] - L ) J L ) Rul Pinned DataSt View Model
/api/datastream/<int=/data(?number= GET | Get the most recent data of a datastream [appliation/json]  datatype: <iotypes> No — ‘ ’ ules Inned Datastreams View Viode
/api/datastream/<int=/info GET Get a datastream's info [application/json] datastream: {dblnfo} No ( ) 'Datastream Model ) ( . J
T e PRI : . RSO = Datastream Route Datastream Route
/apifhome POST Create a new home [appl?cat?on.-.jlsun] name: =string= [application/json] id: <int= No HTTP . \ ) { ) \ ) DataStreams Overview
EEE"SS;‘;”S;S% New Datapoint ) . ) . ule Evaluator DataStreams View Model
/api/node GET Get all of a user's nodes Header homeid: <int> (reqd) [application/json] nodes: [node.. ] No [ TCP Acceptor ] [ Authentication Token ] JS.ON Home Route ) Datapoint Model Node Route
name: <string> ) ’ )
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T R Node datapoint f Rule Model Rule Route gz::ztr;?r? I\S/Ic?cliglgle
outputtype: <string= e e b point—______. > Node Route \ % L [Time Watcher J
outputname: <string> submission \
/api/node POST Create a new node [application/json] datastreamid: <int> [application/json] id: <int= No - N 4 p
- ' Rule Rout
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public: <boolean> success: <boolean> N J _
fapifrule POST Create a new rule [application/json] rule: <json= [application/json] id: <int= Mo Logglng/
name: <string> A Querying ( .
public: <boolean= success: <boolean> Nodes Overview
/api/mule PUT Update a rule [application/json] rule: <json= [application/json] eror: <string> No A Data Request/ Nodes View Model
success: <boolean= Response ~
/apifmule GET Get all rules for a user application/json] rules: amay[rulelnfo No ( .
p Get information about a - o SUCCESS: - Lonleani Nodes Single
< . .
BTty - B i T Node Single View Model
/apiile/<int= GET s pecific rule [application/json] rule: [rulelnfo] No L
/apimile/<int= DELETE Delete a rule [application/json] success: <boolean= No
success: <boolean> v _ ]
updates: array[{nodeld: <int>, Long Polling/ Cookie Storage
/api/updates GET Create a long-polling reque [application/json] homeid: <int> (reqd if not in header or query param) [application/json] data: [datastreamDatatype]l] |No WebSockets
success: <boolean> p
Get all updates fora updates: array[{nodeld: <int>_ Rules Overview
/api/updates/all GET home's nodes [application/json] homeid: <int> (reqd if not in header or query param) [application/json] data: [datastreamDatatype]l] |No Rules View Model
username: <string= (reqd) J
/authenticate POST Get JSON Web Token [application/json] password: <string> (regd) [application/json] token: <string= Yes Ve - ~N
Logs out the user Rule Ed'tor
Clears the cookie Ryle Container
fauthenticate/logout GET Redirects to homepage Yes Sidebar
/signup GET  Signup page text/himi signup.htm Yes E"'raph'cs )
username:<string= (reqd)
password: <string= (reqd)
firstname: <string>
/signup POST  Signup request [appliication/x-www-form lastname: <string> [application/json] id: <int> Yes
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username: <string=
{user/ <string= GET Search for a user [application/json] firstName: <string= Yes
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Interfaces
The hub uses these interfaces:

e HTTP to communicate to the server

« Binary protocol over TCP to communicate with the nodes connected outlet, voice recognition, smart

light, and temperature sensor.
Problems
« Reliability was the most difficult issue we had, since there are a lot of systems
that need to connect with each other.
« Server communicator « We also had some difficulty getting all of the different threads in the hub to
- HTTP class work together well.
« GET/POST « Team member dropped course, so we had to adjust our goals midway through
the semester

Modules
The hub is arranged into these modules:

= Request pipelining
= Automatic reconnecting
o Server class
= Uses HT TP class to communicate with server
= Maintains state information (e.g. current authentication token)
« Node Server class
o TCP acceptor for arbitrary number of nodes
o Separate thread for each TCP connection

Design Decisions

The hub is written in C++ with the boost::asio library for networking so that it can efficiently
handle a large number of connections on a low-power computer.

Each TCP connection has its own thread, which allows for fast and efficient communication
even with many devices connected.




