InteliIHAUS

Intelligent Home AUtomation System

ComsS 309, Spring 2016
Eric Middleton, Sam Oswalt, David Wehr

Description User Interfaces

A smart home framework that allows devices within a user's house to communicate with a Rule Editor
central server. Communication involves uploading data from sensors and receiving e Sidebar (add/edit branches) Node
commands to perform actions. o Tree Interface (visualize tree)

elHAUS | s | Dosieons todes View specific node information
« Manually actuate nodes

Users can also define rules to automate behavior of their devices, using data from their
sensors, time of day, or day of the week.

Branches

IntelliHAUS Rules Datastreams Modes

The home is manageable from a web portal that is available globally, allowing the user to i

view data from their sensors, send commands to actuators, and create rules.

Output data goes to:
Null Qutputs

Actuate node

ACtO rS Green 0

 User (owner of home)
« Device within home

INFORMATION
Created on:

Thu Mar 31 2016

nteliHAUS

[emperature

Server

Empedatine 79 7

Make datastream pubhic;

Interfaces - 3

The server communicates via a REST API with the hub and the website. The API is listed i
below. Datastreams

Created on:
79.3

 View specifc datastream graph
« Make datastream public/private

Modules
The server is arranged these modules:

« Models - Database models for Sequelize, a node.js ORM
« Rule Evaluation - Standalone module that can evalute rules
» Routes - Separates the portions of the server dedicated to handling different requests and

responses
« APl routes - Routes related to API calls / \
« HTML routes - Routes related to serving the website
« Public routes - Routes accessible without authentication s é

Design Decisions

Our server is written in node.js, since it needs to handle many simultaneous connections at J —

a time, including long-poll requests, which require the server to handle connections in an oo

asynchronous fashion. o
username: text longitude: double name: text public: boolean

Since the rules will take a significant amount of the total processing time for the server, as 9) .

they need to be re-evaluated often, separate worker processes are created to handle all the [A I e

rule evaluation, which communicate with the main process via IPC. — 1

Userld: integer Datastreamld: integer Ruleld: integer

.A \ - o name: text lastData: float ARRAY
, continuousData: float

TCP public: boolean
Binary discreteData: int

! Datapoint datatype: text
! Ao binaryData: byte ARRAY
TCP discreteLabels: string
Binary ARRAY time: timestamp [w/ zone]
REST AP

X Hub ‘ J
Request Return Return 7 _SQL'ored
Route Type Description Content-Type Request Body Content-Type Data Fublic Node Cloud vdata
] GET Homepage text/ntmi index. htmi Yes Server Client
nodeid: <int= (reqd) I | Server ORM Mappin
data: <float/data/binary> (reqd) Node HTTP- °
/api/datapoint POST Push new data from a nod [application/json] time: <time= [application/json] success: <boolean> No , Connection r Website
: Connection User Model
name: <string> TCP Socket
type: <iotypes> (reqd) <----- Node actuation ______. []) .
/api/datastream POST Create a new datastream [application/json] public: <boolean= [application/json] id: <int> No [TCP Socket] request HTTP p \ Sign Up/Log In]
name <string> [HTTP GET/POST] Authentication API Routes Home Model HTML Routes < URL Request n
/api/datastream/ PUT Update a datastream [application/json] public: <boolean= [application/json] success: <boolean= [[u] JSON \ J fi N
e = e _ : ‘ ~ p \ ‘) omepage
{api/datastream/<int> DELETE Delete a datastream [application/json] success: <booleans Mo [Packet Communicator] . _
e _ »{Datapoint Route - INode Model Homepage Route Rules Table View Model
datapoints: array[dbDatapoint] - L) J L) Rul Pinned DataSt View Model
/api/datastream/<int=/data(?number= GET | Get the most recent data of a datastream [appliation/json] datatype: <iotypes> No — ‘ ’ ules Inned Datastreams View Viode
/api/datastream/<int=/info GET Get a datastream's info [application/json] datastream: {dblnfo} No () 'Datastream Model) (. J
T e PRI : . RSO = Datastream Route Datastream Route
/apifhome POST Create a new home [appl?cat?on.-.jlsun] name: =string= [application/json] id: <int= No HTTP . \) {) \) DataStreams Overview
EEE"SS;‘;”S;S% New Datapoint) .) . ule Evaluator DataStreams View Model
/api/node GET Get all of a user's nodes Header homeid: <int> (reqd) [application/json] nodes: [node..] No [TCP Acceptor] [Authentication Token] JS.ON Home Route) Datapoint Model Node Route
name: <string>) ’)
inputty pes: <[string]> () r \ T .
T R Node datapoint f Rule Model Rule Route gz::ztr;?r? I\S/Ic?cliglgle
outputtype: <string= e e b point—______. > Node Route \ % L [Time Watcher J
outputname: <string> submission \
/api/node POST Create a new node [application/json] datastreamid: <int> [application/json] id: <int= No - N 4 p
- ' Rule Rout
HATIE o = NI _ ule Houte Y Plot Data Stream
public: <boolean> success: <boolean> N J _
fapifrule POST Create a new rule [application/json] rule: <json= [application/json] id: <int= Mo Logglng/
name: <string> A Querying (.
public: <boolean= success: <boolean> Nodes Overview
/api/mule PUT Update a rule [application/json] rule: <json= [application/json] eror: <string> No A Data Request/ Nodes View Model
success: <boolean= Response ~
/apifmule GET Get all rules for a user application/json] rules: amay[rulelnfo No (.
p Get information about a - o SUCCESS: - Lonleani Nodes Single
< . .
BTty - B i T Node Single View Model
/apiile/<int= GET s pecific rule [application/json] rule: [rulelnfo] No L
/apimile/<int= DELETE Delete a rule [application/json] success: <boolean= No
success: <boolean> v _]
updates: array[{nodeld: <int>, Long Polling/ Cookie Storage
/api/updates GET Create a long-polling reque [application/json] homeid: <int> (reqd if not in header or query param) [application/json] data: [datastreamDatatype]l] |No WebSockets
success: <boolean> p
Get all updates fora updates: array[{nodeld: <int>_ Rules Overview
/api/updates/all GET home's nodes [application/json] homeid: <int> (reqd if not in header or query param) [application/json] data: [datastreamDatatype]l] |No Rules View Model
username: <string= (reqd) J
/authenticate POST Get JSON Web Token [application/json] password: <string> (regd) [application/json] token: <string= Yes Ve - ~N
Logs out the user Rule Ed'tor
Clears the cookie Ryle Container
fauthenticate/logout GET Redirects to homepage Yes Sidebar
/signup GET Signup page text/himi signup.htm Yes E"'raph'cs)
username:<string= (reqd)
password: <string= (reqd)
firstname: <string>
/signup POST Signup request [appliication/x-www-form lastname: <string> [application/json] id: <int> Yes
username: <string>
/user/<int> GET Get a user by id [application/json] firstName: <string> Yes
username: <string=
{user/ <string= GET Search for a user [application/json] firstName: <string= Yes

Team
Hub

Members

« Sam Oswalt - CprE Senior
 Eric Middleton - CprE/EE Senior
« David Wehr - CprE Junior

Interfaces
The hub uses these interfaces:

e HTTP to communicate to the server

« Binary protocol over TCP to communicate with the nodes connected outlet, voice recognition, smart

light, and temperature sensor.
Problems
« Reliability was the most difficult issue we had, since there are a lot of systems
that need to connect with each other.
« Server communicator « We also had some difficulty getting all of the different threads in the hub to
- HTTP class work together well.
« GET/POST « Team member dropped course, so we had to adjust our goals midway through
the semester

Modules
The hub is arranged into these modules:

= Request pipelining
= Automatic reconnecting
o Server class
= Uses HT TP class to communicate with server
= Maintains state information (e.g. current authentication token)
« Node Server class
o TCP acceptor for arbitrary number of nodes
o Separate thread for each TCP connection

Design Decisions

The hub is written in C++ with the boost::asio library for networking so that it can efficiently
handle a large number of connections on a low-power computer.

Each TCP connection has its own thread, which allows for fast and efficient communication
even with many devices connected.

